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Abstract: We offer a novel method which lets us derive the same classical result for 

the precession of the perihelion of a planet due to the gravitational effects of the host 

star. The theoretical approach suggested earlier by the first author is erected upon just 

the energy conservation law, which consequently yields the weak equivalence 

principle. The precession outcome is exactly the same as that formulated by the 

General Theory of Relativity (GTR) for Mercurial orbit eccentricities, but the 

methodology used is totally different. In our approach, there is no need to make any 

categorical distinction between luminal and sub-luminal matter, since, as we have 

previously demonstrated, our theory of gravity is fully compatible with the 

foundations of quantum mechanics. Our approach can immediately be generalized to 

the many-body problem, which is otherwise practically impossible within the 

framework of GTR. Our approach thus leads to a unified description of the micro and 

macro world physics. 

Key Words: Gravitation, General Relativity, Yarman’s Approach, Precession, Law of energy 

conservation 
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Résumé: Nous offrons une nouvelle formulation en vue de prédire la précession 

classique du périhélie d’une planète, dans le champs gravitationnel d'une étoile. Cette 

approche originalement proposée par le premier auteur, est basée uniquement sur la loi 

de conservation de l'énergie, se donnant au principe d'équivalence gravitationnelle 

faible, où la masse au repos de l’objet en question, disparait de l’équation de 

mouvement. Notre résultat de précession est  le même que celui qui est produit par la 

théorie de la relativité générale (TRG), pour une planète parcourant une orbite 

elliptique de faible eccentricité, bien que les philosophies derrière les deux théories, 

sont totalement différentes, l’une de l’autre. Il est important de noter que dans notre 

approche, il n'est pas nécessaire de faire distinction entre le photon et la matière 

ordinaire, comme nous l'avons démontré dans un précédent travail consacré à l’étude 

de la déflection de la lumière; cette propriété rend notre théorie de gravitation tout à 

fait compatible avec la mécanique ondulatoire. Notez que fondamentalement notre 

approche peut facilement être généralisée au problème à plusieurs corps (ce qui est 

pratiquement impossible dans le cadre de la TRG). Notre approche permet en outre 

une unification facile de nos descriptions du monde micro et du monde macro. 
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I. INTRODUCTION 

In 2013, we published a paper about our new cosmological model erected upon the law of 

energy conservation, which consequently yields the weak equivalence principle [1]. In that 

work, we were able to predict Hubble’s Law, and at the same time, provide an answer to the 

dark energy quest. According to our approach, what is widely referred to as “dark energy” 

turned out to be the residue of a very small but positive acceleration of about 10-9 g (where g 

represents Earth’s surface acceleration) of the initial protracted expansion of a multi-layer 

cosmic egg structure, whose radius can be maximally compressed to no further than roughly 2 

billion light years. We also showed that, at some earlier epochs of our universe’s expansion, 

the acceleration might have been negative throughout (i.e. deceleration), which remains in 

good harmony with what is being conjectured today. 

In a subsequent paper [2] once more based on our novel theory, we elaborated on the 

fact that the bending caused by gravitation of visible light all the way down to radiowaves 

happen to be exactly equal to what is predicted by the General Theory of Relativity (GTR). 

On the other hand, we surmised that electromagnetic rays specifically bear a photonic kernel 

of rest mass [3]. Our approach insured, at any case, the “same gravitational potential” as that 

of GTR, which yields under the same framework the usual light bending, Shapiro delay, and 

the precession of the perihelion of the orbit of Mercurial planets. 

In this article, we tackle the precession of the perihelion of a planet in a gravitational 

field based upon the novel theory presented by the first author with the support of his 

colleagues [4-8], which we hereforward refer to as Yarman’s Approach (YA). According to 

this theory, the gravitational field energy may anyway be a non-vanishing quantity in all 

possibly definable frames of reference. The application of the law of energy conservation 

entails not only that we land at the similitude of gravitational and inertial masses, but it also 
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means that, the proper mass of the object at hand is cancelled out of the resulting equation of 

motion. This property is readily recognizable as the weak equivalence principle. 

In our approach, the proper mass 0m is the mass measured at infinitely far away from 

everything else, where we suppose the effect of gravity on it thoroughly vanishes. Said mass 

of an object, when it is brought into and embedded inside a gravitational field, is altered in 

such a way that, its overall motion-wise relativistic energy E, were it furthermore in motion as 

referred to by a distant observer outside of their influence, can be described by the simple 

relationship [4,5] 

 2
0B

2
0 cmE1cγmE     ,              (1) 

where  is the habitual Lorentz factor associated with the motion of the object, c the velocity 

of light in empty space, and EB is the static binding energy; i.e. the energy required in order to 

bring the object of rest mass 0m  conceptually weighed at a distance of infinity (thus free of 

the influence of any field) quasistatically (as if gently pulled by a “rope”) back to infinity 

away. One can anyway think of this object as sitting at rest on a celestial body, where we also 

suppose that the host mass is stationary in space, so as to avoid dealing with the problem of a 

celestial body in rotation around itself.  

The reader should be cautioned that, the static binding energy EB is not the “total 

binding energy” of the object revolving around a given star, which would evidently be 

smaller than the static binding energy due to the kinetic energy associated with the motion of 

the object. The total binding energy is the energy necessary to furnish to the object in its 

trajectory around a given star to take it out of orbit and carry it to infinitely far away. 

Conversely, the static binding energy is the energy one would have to furnish to the object at 

rest (i.e. suspended) at a given location in the gravitational field to bring it quasistatically to a 

distance of infinity. 
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In a closed system, the total energy E as expressed in eq. (1) must naturally remain 

constant owing to the law of energy conservation. Thus, objects with different rest masses 

indeed acquire the same acceleration in a given gravitational field. Note that, this latter 

occurrence holds valid not just in Albert Einstein’s equation of motion, but also within the 

framework of Isaac Newton’s equation of motion. It is just as well valid in our approach.  

The likeness of gravitational and inertial masses always allows the choosing of a 

reference frame where the local geometry intrinsically becomes pseudo-Euclidean. In such a 

frame, a body continues to experience the presence of the gravitational field owing to and 

commensurate with the variance in its rest mass compared to what it would have weighed in 

the total absence of gravity.  

As shown previously [9-11], the decrease of the rest mass of the given object induces 

a corresponding change of its temporal and spatial units, which we call respectively spaceemptyT  

and spaceemptyL , indicating a virtual “original measurement” of said object’s properties taken in 

totally empty space. These quantities become T  and L  when the object is embedded in a 

gravitational field as assessed by a distant observer outside the interacting system, which then 

occur to be a function of the static gravitational binding energy, i.e. [8] 

2
B

spaceempty

cmE1

T
T




0

,    
2

B

spaceempty

cmE1

L
L




0

 .              (2a) 

The static binding energy is proportional to 0m ; thus the above equations do not at all 

depend on knowing what 0m  is.  

Eq. (2a) fosters a metric that is conformally flat, along with a non-constant conformal 

factor. We also observe that eq. (2a) is not subjected to any restrictions when extending the 

local geometry uniformly to the entire space-time. Although, from an operational viewpoint, 

we can only speak about a local geometry in a given location for a given object, unless 



6 
 

information on the properties of other objects located at other spatial points is a priori 

available [1]. 

The above equations are indeed very easy to work with. Supposing we propose to 

measure the distance of a tidally locked and circularly revolving planet around the Sun to this 

star, this distance, say r0, can be measured by an observer situated on the given planet via him 

sending a light-beam of velocity c from the planet to the Sun, and detecting the bounce-back 

from the Sun, and finally working out the local period of time t0 the beam has taken to go 

forth and come back. The distance r0 hence becomes equal to ct0. Meanwhile, the locally 

measured period of time t0 turns out to be shorter than the corresponding period of time t 

computed by a distant observer practically unbound to any gravitational field [cf. Eq.(2a)]. 

The same distance for him, which we now call r, takes the value of ct.  

Since, as we will show in due course, the speed of light in vacuum remains always 

constant in YA, the elapsed period of time the inhabitant of the planet established locally the 

way we described constitutes a (local) measurement of the distance r0. The remote observer 

though, virtually unassociated with the solar system we are dealing with, will assess it as r 

owing to   

2
B

0
2

B mcE1

r

mcE1

ct
tcr





 0  ,      (2b) 

because his clock runs faster in comparison, and that, as much as delineated by the first 

equation of the set of eqs. (2a). 

Or, the other way around, since the local clock on the planet runs slower compared to 

the distant observer’s clock in empty space, the number of ticks the inhabitant of the planet 

would record for the round trip of the signal he sent to the Sun will be less than the tick count 

the outside observer would tally for the same round trip inferred using an identical method 
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and related triangulation.a This entails that, r0  assessed by the local observer is in effect 

shorter than r  when assessed by the distant observer as much as the static binding energy 

coming into play as formulated in equation (2b). 

The infinitesimal change in the altitude of the object at hand in the gravitational field 

of concern induces a change in its static binding energy EB commensurate with a variance in 

its rest mass, and ergo, the subsequent change of metric coefficients through eqs. (2a) when 

applied to the co-moving reference frame of this body. Such modification of metric in the co-

moving frame versus r is sensed (so to speak) by the object as the “gravitational force” [1]. 

In the framework of YA, the overall change of the metric of space-time in the frame 

co-moving with this object represents rather a secondary effect caused by the transformation 

of its rest mass under gravity in concord with a change of its static binding energy. We 

interpret this to preclude any imposition by a space-time curvature based on classically pre-

inserted metric recipes [1]. 

The essential predictions of GTR (such as gravitational red shift, precession of the 

perihelion of Mercury, bending of visible light) are classically considered to be the direct 

results of curved space-time due to the presence of a sizeable mass. In our approach, though, 

they become fundamental and intrinsic quantum mechanical effects based on the deep-seated 

law of energy conservation.  

Our approach also puts into doubt the rather abstract concept of “field”. “Force”, in 

contrast, is a tangible change effectuated by a ponderable source on a proximous object, and 

is not really the result of the interaction of this latter object by an “altered environment”, 

                                                 
a The distant observer O can well calculate the distance r between the Sun (S) and the planet (P) in question via 

sending a light beam to S as well as another to P. The round trip of the first takes the period of time tOS, and 
that of the second tOP. This procedure yields respectively the distances OS=ctOS and OP=ctOP. By measuring 
the angle β  for the sides OS and OP, he can then figure out r=PS based on the known triangle relationship 

    cosβttc2tctcrPS OPOS
22

O
22

OS
222  P

 , 

   yielding therefore, 

cosβtt2ttcr OPOS
2
OP

2
OS   . 

Once the distant observer has reached this outcome, he can then obtain r0 as the distance assessed by the local 
inhabitant of the planet to the Sun via applying eq. (2b). 
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hence, the so called “field”. The change, according to YA, presumably occurs at the inside of 

the body itself [10-12].  

Gravitational red shift too has been considered under the framework of YA in Refs. 

[4,5,8] as a simple and clearly understandable quantum mechanical effect. Interested readers 

may further consult our papers [12-14].  

The light bending result we have arrived at betokens that a photon may bear a non-

vanishing rest mass. In this regard, we do not make any distinction between a luminal and a 

ordinary sub-luminal object [2]. The propagation velocity v of a photon with a kernel of rest 

mass is thusly conjectured to be just a bit less than the uppermost theoretical limit c, and a 

convergence towards c depends, in general, on its frequency. In other words, the higher the 

frequency of the photon at hand, the closer its speed v is to c. However, the assumed 

difference between v and c could remain, to all intents and purposes, indistinguishable even 

when using the most advanced technology and experimental techniques of quotidian science 

[15]. At any case we leave aside the light bending problem in this paper. 

The established general relativistic derivation of the precession of the perihelion of a 

planet can be found in any related textbook. It is also offered in Einstein’s book [16] next to 

the light bending calculations. Einstein based his latter calculations therein on Fermat’s 

Principle [17], which is demonstrably improper as elucidated in the upcoming footnote. 

In section 2, we reproduce the derivation of the precession of the perihelion of a planet 

starting from an energy conservation relationship obtained within the framework of GTR. 

Next, in section 3, we reproduce the elemental aspects of YA basically from Ref. [5]. Then, in 

section 4, we tackle the problem of the alleged gravitational constant, which really is not a 

universal constant according to YA, but increases with the strength of gravity. In what follows 

in section 5, we present our general equation of motion yielding the precession of the 
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perihelion of a planet.b Next, in section 6, we provide a simple and concise calculation of the 

precession of the perihelion of the orbit of a planet. We leave the presentation of the rigorous 

orbital calculations and so forth to a subsequent work; since, this is not really our aim in the 

present article. Finally, we draw a conclusion in section 7. 

The precession results happen to be astonishingly the same in both GTR and YA for 

chiefly orbits featuring small eccentricities such as that of Mercury, despite the fact that there 

exists insurmountable incompatibilities between the two theories. Future measurements of 

higher orbit eccentricities may offer a way of ascertaining the validity of which approach 

under consideration comes closer to reality. 

 

II.  PRECESSION OF THE PERIHELION OF A PLANET AS PER GTR REVISITED 

Consider a relatively big mass M, such as that of the Sun, as the source of a “gravitational 

field”. The Schwarzschild metric in isotropic form is given in [18,19]. Here, we make use of a 

two-dimensional formulation expressed by 

        222222 2121 drdrdtcds     ,    (3) 

where  

                                                 
b A. Einstein originally offered in his book [16] a derivation of light bending based on Fermat’s Principle, where 

he concluded light velocity in GTR should decrease nearby the ponderable mass under consideration, which 
consequently induces a related bending. T. Yarman chose for simplicity to do the same in his original 
derivation of light bending, and also for that of the precession of the perihelion of Mercury [5] to obtain the 
deviation of the trajectories from the Newtonian trajectories, thereby producing his own results. Yet, the 
application of Fermat’s Principle, while amazingly producing the expected results, turns out to be 
inappropriate. More specifically, while light is slowing down nearby the ponderable mass of concern, say, 
along a vertical direction from z= - to z=0 (the latter being the impact point; and the trajectory of light is 
assumed, for simplicity’s sake, to be a straight line), one obtains via applying the Fermat principle a deflection 
angle along the horizontal direction toward the gravity source amounting to /2 (i.e. half of the expected total 
deflection angle). However, at the spatial domain corresponding to the variation of z from 0 to +, the velocity 
of light is now increasing with z according to GTR (no matter how awkward this may sound, seeing as such is 
contrary to common sense to imagine an object having grazed a celestial body speed up after it goes past it, 
given that one would contrariwise expect it to slow down due to the tug of gravity), and the application of the 
Fermat Principle yields a deflection angle of /2, still in the horizontal, but in the opposite direction of that of 
the first one (thus away from the source of gravity). In other words, the overall deflection angle, if we choose 
to use the Fermat Principle the way Einstein did, must come out to be zero! So, the proposed setup based on 
Fermat’s Principle is improper. One wonders, though, howcome the algebraic setup based on Fermat’s 
Principle still leads to the expected results. To keep this story short, we will leave related explanation aside. 
Suffice it to say that, any setup based on the Fermat Principle is conceptually invalid no matter how 
fortuitously correct results may be reproduced through its employment.  



10 
 

2
0 rcG M ,      (4) 

and where ,r  are polar coordinates, G0 is the habitual gravitational constant, and c is the 

velocity of light in vacuum. Note that, all of the above coordinates are those measured by the 

distant observer practically outside of the influence of said gravitational environment. 

Within the framework of the metric (3), we see that lengths are contracted and periods 

of time stretched as referred to by the distant observer in comparison to what they would have 

been at a location in empty space free of the gravitational effects of the host star. Thus, an 

infinitely short (proper) spatial length dlL lying at a given altitude from the center of M as 

determined by a fixed observer situated at this altitude will be measured to be dl when 

measured by the distant observer, so that  

αdldl L 21 .         (5) 

The time periods are dilated under gravitation in GTR. That is to say, the locally 

measured (proper) period of time d  associated with a clock situated at the given altitude is 

determined to be dt when assessed by the distant observer, so that 

αdτdt 21  .         (6) 

Now, consider an object in motion nearby M crossing the piece of trajectory dl in orbit during 

the period of time dt, as assessed by the distant observer. The coordinate velocity v (i.e. the 

one observed by the distant observer) is by definition 

dtdlv   .          (7) 

The fixed local observer, instead, will measure the velocity vL to be,   

dτdlv LL  .          (8) 

The two velocities relate to each other via eqs. (5) and (6): 

α)2(1v
α21dτ

α21dl

dt

dl
v L

L 



 ,         (9) 

with the accuracy of calculations leaning towards c-2. 
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This means, proper velocities in GTR decrease by the factor  α21  under 

gravitation as gauged by the distant observer. Recall that, this holds for any velocity, and 

therefore too for the velocity of light. The proper velocity of light c0 in GTR, as ascertained at 

empty space free of any gravitational field, decreases nearby the mass M when assessed by a 

distant observer at an altitude r  to become c, so that 

α)2(1cc 0  .         (10) 

This is the purported explanation of the well-known Shapiro delay [20]. Take heed 

though, while Einstein’s application of the Fermat Principle to the light bending phenomenon 

did turn out to be improper as explained in the previous footnote, the metric sketched at the 

level of eq. (3) leads to the expected bending angle of light passing a nearby star. 

Consider at this point, when we say “speed of light”, we mean throughout this article 

c0, and we shall denote it from now on simply as c, and not as c0.  

We hereby propose to illustrate how the precession of the perihelion of concern, based 

on GTR, can be derived starting from an expression written for the total relativistic energy 

[21], 

00
2

0 gcγmE     ,         (11) 

when an object with a rest mass 0m  (established at infinitely far away from all else) is 

moving in a static (or stationary) gravitational field. Here g00 is the time-time component of 

the general relativistic metric tensor,   21221


 cvL  is the usual Lorentz factor of the 

given object, and the subscript “L” means that the velocity vL is ascertained by a local 

observer resting at a given location on the orbital trajectory of the planet. 

In the chosen metric, eq. (1) takes the form of 

α21cγmE 2
0    ,          (12) 
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which says that the relativistic rest energy 2
0 cm  of an object, when brought into the vicinity 

of a gravity source, is decreased according to the GTR by the coefficient α21  by virtue of 

the space-time curvature induced by the presence of the host mass.c This is the general 

relativistic gravitational red shift effect coming into play for an object embedded in a 

gravitational field.  

On top of that, the relativistic rest energy is increased as much as the Lorentz factor as 

drawn from the Special Theory of Relativity (STR) when the object at hand is brought to a 

motion around the host. In such a framework, eq. (12) is easy to grasp; it is the overall 

general relativistic energy of the planet moving within the gravitational field of the star. 

 Next, we suppose that the rest mass M of the host object is so much heavier than the 

rest mass 0m  of the orbiting object so as to render it inert, i.e. M>> 0m . In this limit, the 

energy expressed by eq. (12) in GTR represents a given constant value denoted by C,  

Cα21cγm 2
0  .        (13) 

Taking the square of this  

 22
0

2

2

2
L cm

C

c

v
1

α21







,        (14) 

then differentiating it, gives us  

22

2

)21(1
c

dvv

c

v
d LLL  








 .        (15) 

Via the definitions made in eq. (4), and eq. (5), one then arrives at 

LLL
L dv)v(dr

c

v

r

G









 21211

2

2

2

M
, or    (16) 

                                                 
c Note that, rest energies are decreased, while masses are increased due to the assumption of GTR on the 

equivalence of the effects of acceleration and gravitation. Whereas in YA, both rest energies and masses 
decrease by the same factor in a gravitational field. 
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LLL
L dvvdr

c

v

r

G









 211

2

2

2

M
  .      (17) 

Recall the common binomial expansion for a very small α  as compared to unity: 

α1α21   .          (18a) 

Moreover, for a nearly circular orbit, which arguably can be said to be the case of 

Mercury, we can approximately write 

r

v

r

G 2
L

2


M
, or         (18b) 

2

2
L

2 c

v
α

rc

G


M
  .        (18c) 

Thereby - for a nearly circular orbit - eq. (17) becomes  

LLL2
dvvdr

r

G


M
.        (19a) 

At the LHS of this equation we now have Newton’s gravitational “field intensity” 

2/rGM . For a relatively small α , eq. (19a) can be more appropriately re-written as [cf. eqs. 

(17) and (18a)] 

LL2

2
L

2
dvdrα)(1

c

v
1

r

G











M
 .       (19b) 

On the other hand, the Newtonian vector attraction force exerted by M on a unit mass 

of the planet situated at a distance r, as well as the local vector acceleration dd Lv  of the 

planet, lie along the same direction, but face the opposite direction than the radial direction r 

(which we consider as directed outward). 

We now take into account the local velocity vector [eq. (8)], 

 dd LL rv   ,          (19c) 

where the vectors vL and drL are parallel to each other.  

Hence, 
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LL

LL

LL

LL

dvv

d

drr

d vvrr 



 , and       (20) 

LL

LL

L

LL
L d

dvv

r

d
dr

vv

rr




    .        (21) 

Substituting this equality into eq. (19a), we get 

LL
L

LL d
r

d

r

G
vv

rr





2

M
    ,       (22a) 

and dividing this outcome by d on both sides, which is the differential period of time of the 

local observer, we obtain 

dτ

dv
v

r

vr

r

GM L
L

L

LL
2




   .        (22b) 

Through the cancellation of vL terms, one finally gets to the vectorial equation of 

motion: 

dτ

d

rr

G Lvr


2

M
.          (23a) 

This is interesting, for it says that GTR straightforwardly furnishes, on the local level, 

the Newtonian Equation of motion for a planet travelling in a nearly circular orbit                  

(something not widely known at all). 

Using eq. (9), we can, still for a nearly circular orbit (for which α  practically stays 

constant), write in vector form 

α)2(1dd L  vv  , or        (23b) 

α)2/(1L  vv dd .        (23c) 

Furthermore, using eq. (8), we can express eq. (23a) via the coordinate velocities and 

accelerations (as measured by a distant observer): 

  dtα21

d

rr

G
2/32 


vrM

  , or       (23d) 

 
dt

d

r
α31

r

G
2

vr


M
,       (24) 

where we have taken into account the common expansion 
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   α31α21 2/3   ,         (25) 

in the adopted accuracy of our calculations. 

 For nearly circular orbits, we can practically write, via eq. (18b) 

dt

d

rc

v
31

r

G
22

vr











2M
,       (26) 

where, on the LHS, we can legitimately rely on the approximation  

vvL  .          (27) 

Thus in GTR, it is the term in between the parentheses on the LHS of eq. (26) which 

makes the perihelion of the planet to precess around a star.  

Remembering how we arrived at the above results, one can summarize in the 

proceeding steps that the precession in GTR is due to i) the motion of the object, ii) the 

contraction of lengths, and iii) the stretching of the units of the period of time. The last two 

transformations are conjointly responsible for the decrease of the local velocity when assessed 

by the distant observer. Eq. (26) is useful for comparing the effects due to GTR to those due 

to YA with respect to the precession of the perihelion of the orbit of a planet. 

The precession of the perihelion in YA on the other hand, is, as shall be revealed 

further on, attributable to i) the motion of the object (just like it is the case in GTR), ii) the 

quantum mechanical stretching of the sizes commensurate with a decrease of the rest mass of 

the bound object, and iii) the related dilation of time. The last two occurrences taking place 

together secure the constancy of the velocity of light (or any other speed) under gravitation in 

YA.  

We will further see that, the new scalings of masses, lengths and periods of time 

coming into play under the umbrella of YA entail that the gravitational constant, is not really 

a universal constant after all, but increases with the strength of the gravitational field. Notice 
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furthermore, that YA, unlike GTR, does not embody any singularities (infinitely dense point-

size objects). This surely has profound implications for cosmology if ascertained.  

In the next section, we will show that YA predicts practically the same precession 

outcome when the eccentricity of the elliptic orbit is small (e.g. when the orbit is nearly 

circular). Instead of using the perturbational calculation to determine the divergence of the 

new orbit from the classical orbit (which Yarman originally undertook in Ref. [5]), we will 

henceforward provide a direct and concise calculation of the precession of the perihelion.  

 

III. ELEMENTAL ASPECTS OF YARMAN’S APPROACH FOR GRAVITATIONAL 

INTERACTION 

Suppose one has under consideration a universe consisting of just two celestial bodies 

gravitationally interacting with each other, such as our Sun and Mercury. Let M  be the mass 

of the much heavier Sun, and 0m  the mass of the planet when initially weighed at infinity 

away, where all the gravitational force on it vanishes.  

The constraint M >> 0m we just framed for the masses above is indeed not a necessity 

for the approach we will momentarily sketch. We do so that, when 0m  is in motion around 

M, this latter always stays in place as viewed from the perspective of a distant observer 

virtually outside of the influence of their interaction and at rest with the planet, so that we do 

not have to deal with a two-body scenario for the moment, which can still be solved anyway 

according to YA as shown in [22]. 

We will heed to the following basic procedure for conceiving the motion of Mercury 

around the Sun based upon YA:  

First, we shall visualize bringing Mercury quasistatically from infinitely far away to a 

chosen radius r on its prospective orbit around the Sun, and hold it suspended there for a 
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moment (i.e. at rest). Second, we shall imagine to deliver to it the impetus to kick it into its 

orbital motion. 

The first step, owing to the law of energy conservation and broadened to include the 

mass and energy equivalence of the Special Theory of Relativity (STR), yields in YA a 

decrease in the rest mass of 0m  as much as the static binding energy B(r) coming into play 

[4,5]. Thus, 0m  becomes m(r), so that 

  B(r)cmcm(r) 2
0

2   .                  (28) 

Let us precise that c is the speed of light in empty space. We have thus applied a principal law 

of YA as elucidated right below. 

Law 1: The rest mass (or the same, rest energy, were the speed of light taken unity) of an 

object bound to a celestial host body, in fact to any plausible source of gravitation or 

other force field it may interact with – such as the case of, say, two hydrogen atoms 

bound to an oxygen atom in a water molecule, or a muon, for instance, bound to an 

atomic nucleus – amounts to less than the object’s rest mass measured in “empty 

space”; and this, as much as its “static binding energy” vis-à-vis the attraction source 

of concern. 

If one further carries mass m(r) quasistatically away from M as much as dr, he has to 

furnish energy against the gravitational pull M exerts on m(r); which then, owing to Law 1, 

will yield an increase in the mass m(r) as much as dm(r). Therefore we may, in our familiar 

notation, write: 

 dr
r

m(r)
Gcdm(r)

2
2 M

0 ,        (29) 

where G0 is the known “Universal Gravitational Constant”.  

We need to attract the attention of the reader to the fact that G0 is not a “universal 

constant” in YA. Indeed, when embedded inside a gravitational field, as we shall soon see in 
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the next section, the so-called gravitational constant transforms to become G as assessed by 

the distant observer. Here the “Gravitational Force” is nothing else but the usual Newtonian 

Attraction Force, but defined our way.  

If the masses m(r) and M of concern are not at rest with respect to each other, then, 

just as Newton himself suspected, the law of gravitation between these two masses is not 

anymore governed by the expression G0m(r)M /r2.  

This latter expression is for when referred to by the local observer as shall be 

illustrated below [7]. Note further, we do not really need to borrow the law of gravitational 

attraction from Newton [5], since we have demonstrated that it is in fact, a requirement 

imposed by the STR; though, strictly for masses at rest [5]. 

The integration of eq. (29) yields immediately the decreased mass m(r): 

αemm(r) 
 0 ,        (30) 

where  is the same as demarcated by eq. (4). 

The comparison of eqs. (28) and (30) bequeaths the static binding energy B(r) at the 

given location r: 

   α2
0 e1cmB(r) 
   .         (31) 

Along the course of the mentioned second step, we now envision hurtling Mercury 

into orbit around the Sun from its suspended altitude r, to where we had already brought the 

planet quasistatically from infinitely far away to a position at rest. Mercury will hence bear 

the velocity v in its orbital trajectory of concern at the given location.  

This yields the Lorentz increase of the rest mass m(r) at r, so that the overall 

relativistic mass γm , or the same, the overall relativistic energy of the object (which for an 

isolated system ought to remain constant throughout in orbit), becomes [see eq. (1)] 
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        Constant

c

v
1

e
cm

c

v
1

cm

B(r)
1

cmcm

2

2

α
2

0

2

2

2
02

0
2

γ 















 .      (32) 

This equation encapsulates the overall relativistic energy of the object on the given 

orbit under the framework of YA. The above is, in effect, the elaborate form of eq. (1) re-

written based on the present approach. 

There is a striking similarity with this equation of the total relativistic energy obtained 

under the framework of GTR [see eqs. (12), (13) and Ref. 22]. They yield the same result up 

to a third order Taylor Expansion, and naturally both produce the Newtonian equation of 

motion as a first approximation. This is quite extraordinary, and has been highlighted in a  

previous work [cf. Ref. 5]. 

In YA, the instantaneous orbital velocity v is an invariant both for the distant observer 

and the local observer on the planet [5]. Accordingly, the speed of light (or in fact any speed) 

remains the same under gravitation in YA when measured by either the local observer, or the 

distant observer.  

This property is not at all an assumption, but arises from the quantum mechanical 

aspects of the theory. Distances and periods of time under gravitation are transformed in the 

same direction owing to inherent quantum mechanical inter-play of quantities when a rest 

mass change is introduced into the quantum mechanical description of the object at hand [9-

11]. The rest mass of the object under consideration decreases via eq. (31) through attraction 

in any field it comes to interact with, thus yielding quantum mechanically a corresponding 

size increase and a stretching of the period of time by exactly the same amount as measured 

by a distant observer.d The resultant clock retardation in YA is due to the slowing down of the 

                                                 
d  And this is precisely why the speed of light, according to the present approach, remains unchanged when 

passing near and around a celestial body; while bearing in mind the fact that light will still take a longer 
amount of time to graze the body of concern as referred to by the distant observer, but now due simply to the 
increasing of the distance alone – which thence remarkably accounts for the Shapiro delay, but through a 
totally different philosophy. 
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internal dynamics of the object, thereby causing a gravitational red shift. Whereas, in GTR, 

distances are contrariwise contracted and periods of time are stretched [see eqs. (2a) and 

(2b)].  

Observe also, mass in GTR (owing to the principle of equivalence as originally 

advanced by this theory between the effect of acceleration and the effect of gravitation) 

increases under the gravitational field, whereas energy decreases; which creates serious 

difficulties with respect to the thorough implementation of the law of energy conservation in 

GTR [23]. In YA, however, both mass and energy vary in the same direction under gravity.  

At this point, it might be useful to summarize how mass, size, time period and energy 

deviate in a gravitational field according to both GTR and YA. Table 1 reflects the 

coefficients that are to be multiplied with the original quantities of concern, that are ideally 

measured in empty space free of any field and when embedded in a gravitational medium with 

respect to a remote observer. 

 
Table 1 How mass, size, period of time and energy at rest vary in a gravitational field  

in GTR and YA? 
 

 Mass Size Period of time Energy Velocity of light 
GTR α/ 211   α21  α/ 211   α21  α21  

 
YA 

 

αe  αe  αe  αe  Invariant 

 
Explanation 

About the same 
but in opposite 

directions 

About the same 
but in opposite 

directions 

 
About the same 

 
About the 

same 

Gets changed in 
GTR, but remains 

constant in YA 
 
 

IV.  EQUATION OF MOTION AND THE VARIATION OF THE GRAVITATIONAL 

CONSTANT WITH THE INTENSITY OF THE FIELD IN YARMAN’S 

APPROACH 

Eq. (32), via differentiation, leads to 

.
c

vdv

c

v
1dαdr

c

v
1

cr

G
22

2

2

2

22




















M0         (33) 
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This equation is valid for any object in a given trajectory within a closed system 

because of its general construction, since it does not make any distinction between a light 

particle bearing a kernel of rest mass (no matter how tiny this may be) and ordinary sub-

luminal matter [5]. In this sense, the photon is conceived to be an ordinary object moving at a 

speed less than the theoretical barrier c, no matter how close v may be to c. Hence, the greater 

the energy of such a photon, the closer its speed is to the uppermost ceiling velocity c. 

(Anyway as conveyed, the interaction of specifically photons with a celestial body, is left 

aside in this article.)  

At any rate, in YA, the so-called gravitational constant is not a universal invariant at 

all. Accordingly, eq. (33) is to be slightly modified, as shall be discussed below.  

Let us recall that, eq. (33) is written in the frame of the local observer as has been 

drawn from the fabric of eq. (29). Nonetheless, converting it into vectorial form, we obtain 

dt

d

rc

v
1

r

G
2

2

2
0 vr











M
 .         (34) 

Here, r is the position vector issuing from the center of the Sun and pointing to the 

given instantaneous location of either the photon or any other sub-luminal object.  

So far, we have tacitly assumed that the gravitational constant G0 is not affected by the 

source of gravity. Yet, in both GTR and YA, the gravitational constant is dimension-wise 

altered in a gravitational field. Surely, a quantity the overall exponent of whose dimensional 

scaling coefficients does not vanish cannot remain constant in the gravitational medium of 

concern. 

It is troubling that this fact has been overlooked in GTR since near a century. Recall 

that, the assumed gravitational constant bears the dimensions of forcesize2/mass2, or 

(masssizesize2)/(time2mass2). Table 2 clarifies how the alleged gravitational constant 

varies dimensionally under a gravitational field for both GTR and YA. 
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Table 2 How the assumed “gravitational constant” varies dimensionally in a gravitational field for GTR 

and YA)* 
 

 How does the alleged gravitational constant vary? Overall coefficient 
coming into play 

GTR (p) mass(1/p) size(1/p2) size2/[(p2) time2(p2) mass2] 
 

1/p6 

 
YA 

 
(1/p) mass(p) size(p2) size2/[(p2) time2(1/p2) mass2] p2 

 

* The coefficient p is α/ 211   for GTR, and αe for YA.  
    For relatively small α ’s, both quantities are practically equal to each other.    

 
Thanks to this dimensional analysis, we can easily observe that G0 remains constant in 

neither GTR, nor in YA. Thus, it is incorrect to consider it to be a universal measure at any 

rate! Nevertheless, in YA, just like in STR, not only c, but Planck’s Constant h, as well as e2 

(the square of an electric charge in Gaussian units) remain fully constant.e 

In any case, let us return to YA and ask: How does one measure the gravitational 

constant? The answer lies with the famous Cavendish Experiment [24]. To determine the 

proper gravitational constant G0 in the laboratory, the proper force f0 exerted by a ball of a 

given proper mass m0 on another ball of the same proper mass m0 suspended from one edge of 

a balance that is counter-weighted at the other end with another suspended proper mass m0 

needs to be assessed. The distance between the two interacting balls of mass m0 each is R0. In 

accordance with our adoption of Newton Force as entered into Eq.(29) above, the 

gravitational constant G0 then becomes 

                                                 
e   The fourth co-author triggers our awareness with regards to the fact that, electron charge intensity e expressed 

in StatCoulombs (otherwise known as StatC, or the same, esu under the CGS unit system) instead of e 
expressed in Coulombs under the MKS unit system is Lorentz Invariant. That is, electrostatic units are not 
altered when brought to a uniform translational motion, whereas Coulombs are. It directly implies the 
Lorentz Invariance of the quantity 

0
2 /εe  in the MKS unit system (where 

0ε  is the customary term for the 

permittivity of free space) instead of just e2
 in Coulombs2. This can be drawn from the dimensionless Fine 

Structure Constant 
hc

e

0

2

2
 

 , where 
0ε  is identifiable as 

mFarads
Nmc4

C10
2

MKS
2

27

/10 x8.85418782 12- 


 using the 

relationships 2
00 /c1με   (

0μ  being the magnetic permeability of vacuum) and 710x4 0μ  Henrys  per 

meter (being fixed by definition), with 
MKS

c  indicating the modulus of the velocity of light in meters per 

second. Given that hc is a Lorentz Invariant quantity, its complement 
0

2 /εe  (i.e. Newton force x Surface Area 

in squaremeters) occurring in the formula for the Fine Structure Constant ought also to be a Lorentz Invariant 
quantity to properly cancel the dimensions. Finally, the unusual transformation relationship between the 
charge intensity expressed in CGS and MKS unit systems can be presented in the form of eStatC = 10 x e 

Coulombs x |c MKS|, which is something not widely recognized. 
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2
0

2
00

0 m

f
G

R
  .         (35) 

 However, the distant observer in YA will, according to Table 2, require to transform 

eq. (35) to arrive at his G (with regards to the Cavendish equipment embedded in Earth’s 

gravitational field) as follows: 

    α2
0eGG   .          (36) 

The small distance R0 between the Cavendish balls becomes α
0 eRR   when assessed 

by the distant observer [see eq. (2b)]. We therefore conclude that, it is actually G0/R02 which 

remains invariant in YA.f Consequently, 

     
2
0

2

0G

G

R
R

  .          (37)  

How, under these circumstances, will the distant observer express the gravitational 

force F between, say, the Sun and the Earth (or the Sun and Mercury), when both the star and 

the planet are assumed to be at rest with respect to each other? The answer, based on the 

discussion which ensued so far, is none other than 

2r

m(r)
GF

M
  .            (38) 

 
All of the quantitites appearing here are those assessed by the distant observer. M is, as 

conveyed previously, the mass of the Sun, m(r) is the mass of the planet at a distance r from 

the Sun, and G is defined by eq. (36). The distant observer, on the other hand, would have his 

own gravitational constant G0 after having conducted his own Cavendish experiment at a 

                                                 
f   The invariance of the quantity G0/R0

2  is fascinatingly echoed at the atomistic level in the demonstrable 
proportionality 46e / , where e is the electric charge in StatCoulombs (hence Lorentz Invariant, unlike 
Coulombs), with the denominator containing the fourth power of the Reduced Planck Constant; or otherwise, 
in the identical MKS relationship 3

0
46 ε4hπ/e  (where 

0ε  is the electrical permittivity of vacuum). Note that, 

anything Lorentz Invariant remains unchanged in YA whether or not it is embedded inside gravity (or any 
other type of field it can interact with). 
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place practically free of any surrounding gravitational influence – i.e., on a celestial abode of 

negligle mass using small Cavendish balls.  

In effect, what one measures on Earth, pretty much satisfies the ideal conditions, 

because Earth is a relatively light celestial body in comparison to the Sun, or many other stars. 

One can similarly well or even better define the proper gravitational constant G0 on a tiny 

asteroid practically free of any gravitational field. 

It is in any case important to note that the proper quantity G0 or in fact any other 

quantity, locally measured anywhere, i.e. either in almost empty space, or in a strong 

gravitational environment, shall in YA, turn out to be the same, just like a stick meter locally 

speaking is everywhere the same stick meter (provided that it preserves its “identity”) . The 

thing is, if a local observer assesses the given quantiy, but located at a different gravitational 

altitude than his, then he would come out with a different number for this quantity, say G0. 

Thence, although all local observers would locally come with the same number for G0, there 

is no symmetry between obervers as to, they would assess from their own locations, each 

other’s G0 differently, as detailed above.      

Let us continue anyway: A local observer on Earth can measure his proper distance r0 

to the Sun by sending a light signal, receiving it back, and counting the ticks in the interim on 

his own clock. This is the distance r for the remote observer. The relationship between r and 

r0 , in YA, using eqs. (2a) and (2b) next to Table 1, is 

α
0err   .            (39) 

We have thus defined r0 as the distance measured by an observer on the planet, who 

sends to the Sun a light beam, detects the beam bounced back from the Sun, and counts the 

number of ticks his local clock would display at the end of the beam’s journey. Since the 

velocity of light traversing empty space in YA is under all conditions a universal constant, the 

number of ticks the local observer would register by watching his local clock constitutes a 
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local estimation of the distance of the planet to the star of concern. But since the clock of the 

remote observer ticks faster, the distance r will be determined to be longer than r0 owing to 

the necessary transformation as explained in the Introduction. 

We ought to stress again, that the velocity of light is anyway a universal constant in 

YA, and, unlike in GTR, stays always constant on its way to the star and back to the planet. 

This makes the mathematical description of the present approach much easier to set up than 

the one advanced by GTR. 

Note further that, eq. (39) is an intrinsically quantum mechanical representation of the 

scenario at hand (see Refs. 10-12). If the rest mass of an object in its quantum mechanical 

description is lessened, then its total energy will as well. When the rest mass is decreased 

under the gravitational field, its energy must decrease in the same way. As a consequence, its 

period of time conjointly stretches just as much, meaning the slowing down of the local clock, 

while its size proportionally lengthens as specified in eq. (39). This is nothing else but the 

classical gravitational red shift, this time due not to space-time curvature, but simply by virtue 

of quantum mechanical transformations. As a result, YA is fully compatible with quantum 

mechanics, and, in fact, opens a novel way to unify it with relativity the way we attempt here.  

Eq. (39) implies that we can rewrite eq. (37) in the following form: 

    
2

0

0
2 r

G

r

G
 .           (40) 

Via eq. (38), the force between the Sun and the Earth becomes 

2
0

0
0 r

)m(r
GF

M
 ,        (41) 

as assessed by the remote observer, but now in terms of a gravitational constant value pinned 

down in practically empty space, while the distance of the planet to the Sun has been 

measured locally as explained. 
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Next to the ratio G/r2, another invariant in YA appears to be the quantity   

gravitational constant  mass2 or force  distance2 (cf. Table 1). This means that, the 

Newtonian gravitational attraction force 2
00 /r)m(rG M  is the force measured with respect to 

the local observer on the planet. 

The notion of the  gravitational attraction force (for masses strictly at rest) as assessed 

by the remote observer designating r0, while the same force as assessed by the local observer 

designating r instead may seem awkward. But it must be the way it is, if one wants to use the 

gravitational constant G0 measured at ideally empty space practically free of gravitational 

surroundings in the given force expressions. A discussion of this issue is provided in Ref. [7].  

Before we close this section, let us briefly check if the gravitational force we 

employed in eq. (29), as measured by the local observer attached to the planet, and the 

identical force, but as assessed by the distant observer expressed through eq. (38), are well 

compatible within the present framework.  

We can notice right away, that the ratio of [the local force] / [the identical force 

measured by the distant observer], amounts to αe)/r(r 222
0

  [(see eq. (39)]. On the other 

hand, we can consider that the force has the dimensions of massvelocity/period of time. 

Masses in YA, when embedded in gravity, are affected by αe  when assessed by a distant 

observer (see Table 1), and periods of time are conjointly stretched by αe ; velocities though, 

are untouched. Therefore, the local force bears an intensity α2e  smaller than that of the 

identical force as assessed by the distant observer. The cross-check thence provides the 

expected outcome. 
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V. THE PRECESSION OF THE PERIHELION OF A PLANET ACCORDING TO 

YARMAN’S APPROACH  

Equation (33) is relevant for a local observer. In order to express it with respect to the distant 

observer, we have to replace r by r0 via using eq. (39) Thus, eq. (33) can be re-written as 

0002

2α

2
0

0 dvvdr
c

v
1

α1

e

r

G














M
 .        (42) 

Recall that, the gravitational force F as assessed by the distant observer between the 

star and the planet, both of which are at rest to him, is given in eq. (41). So, in the LHS of the 

above equation, we specifically have the gravitational attraction force 2
00 /rG M  exerted by the 

source mass M on a unit test mass at rest as viewed by the distant observer.  

In eq. (42), we alternatively wrote 00dvv instead of vdv, since the velocities in YA are 

left unaltered at any rate. Now, we divide both sides by the infinitely short local period of 

time term dt0 to obtain [5] 

0

00

0

0
2

2α

2
0

0

dt

dvv
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c

v
1

α1

e

r

G





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
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




M
, or     (43) 

0

0
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
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M
 .        (44) 

Using the technique followed at the level of eqs. (20) and (21), we can transform the 

latter equation into the corresponding vector equation: 

0

0
2

2α

2
0

0

dt

d

rc

v
1

α1

e

r

G vr





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







M
 .        (45) 

We can discern that one is entitled to write  

0

0

dt

d

dt

d vv
  ;       (46) 

that is, the accelerations measured both locally and by the remote observer are about the same.    
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The reason for, is that, dt is practically equal to dt0. Indeed, from eq. (39) one can 

obtain 

0

α
0 dr
α1

edr
dr 


  .                            (47) 

Since lengths and periods of time stretch just as much in the present approach, one can 

similarly obtain 

0

α
0 dt
α1

edt
dt 


  .        (48) 

 The difference between eq. (45) and eq. (42) is thus insignificant, even for relatively 

strong fields for which  is around 1/2.  

Notice that, we could just as well proceed from the vector eq. (34) onward via using 

eq. (39) to attain 

dt

d

rc

v
1e

r

G
2

2
α20 vr









 

2
0

M
 ;      (49) 

which is, owing to eq. (46), practically the same as equation eq. (45). 

Eq. (45), or its similar, eq. (49) as we disclosed above, is the general equation of 

motion as assessed by the distant observer, irrespective of the distance r0 between the Sun and 

the planet measured by the local observer on the planet. It provides both the precession of the 

perihelion of the orbit, and the light bending for photons having a kernel of rest mass; thus 

making it unnecessary to distinguish, on the whole, luminal and ordinary sub-luminal objects. 

Note that, for small , eq. (45) immediately reduces to eq. (34). Moreover, eq. (42) is 

the same equation as eq. (26) obtained using a GTR setup for the case of a planet in a nearly 

circular orbit around the Sun.  

 So far, we have demonstrated that GTR and YA produce the same outcome to all 

intents and purposes, but through totally different theoretical foundations. While eq. (42) is 

rigorous, the analogous equation obtained in GTR is valid only for nearly circular orbits. We 
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summarize in Table 3 the reasons for why a planet’s perihelion precesses in its orbit around 

the Sun according to GTR and YA respectively. As surprising as it may seem, virtually the 

same amount of precession is predicted by both theories. The calculation of the rigorous orbit 

is left for a subsequent work. 

  
Table 3 Elements making a planetary orbit precess around the Sun according to GTR and YA 

 
 Why does a planet exhibit precession of the perihelion 

in its orbit? It is due to the following reasons. 
Explanations 

GTR 
i) The motion of the object. 
ii)  The contraction of lengths. 
iii) The stretching of units period of time. 

The last two items are responsible for the 
slowing down of the local velocity as 
assessed by the distant observer. The same 
goes for the speed of light. The 
gravitational constant is kept unaltered in 
GTR, whereas it should vary.  

YA 
 

i) The motion of the object. 
ii) The quantum mechanical stretching of lengths, 

which go along with the mass decrease. 
iii) The conjoint quantum mechanical stretching of 

periods of time. 

The last two items together secure the 
constancy of the velocity of light under a 
gravitational field. The scaling of masses, 
lengths and periods of time entail that G is 
not a universal constant, but increases with 
the strength of the gravitational field. 

 

VI.   CALCULATION OF THE PRECESSION OF THE PERIHELION BASED ON 

YARMAN’S APPROACH 

To compare the predictions of GTR and YA apropos the precession of the perihelion, let us 

start by assuming a nearly circular orbit. Newtonian Equation of Motion (18-b) dictates  

2

N

v
r

G


M0 ,         (50) 

where rN is the orbit’s radius predicted by the Newtonian approach with regards to the given 

velocity v. 

 On the other hand, eq. (26) delineated by GTR, or similarly by the corresponding YA 

eq. (42), for small α  and nearly circular orbits predict the orbital radius r for a given velocity 

v for both GTR and YA: 
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For a nearly circular orbit this yields 

  20 vα31
r

G


M0   .         (51b) 

The angular velocity Nω  of the planet for the given velocity v in the Newtonian 

approach is, by definition, 

N
N r

v
  .         (52) 

In contrast, the angular velocity ω  of the planet as assessed by a distant observer in 

either GTR or YA for the given velocity v is, again by definition, 

r

v
ω   ,         (53) 

with r  being the instantaneous distance of the planet to the Sun corresponding to v. 

The angular velocity ω  of the planet, as predicted by GTR or by YA, can therefore be 

expressed in terms of the Newtonian angular velocity Nω : 

α31

ω

r

r
ωω NN

N 
   .         (54a) 

Using eqs. (50) and (51b) to evaluate the magnitude of the ratio rN/r, we finally get 

α31

ω
ω N


   .                     (54b) 

This equation shows that, the angular velocity is a bit larger in either GTR or YA than 

predicted by the Newtonian gravity setup. During one Newtonian revolution of period T, the 

orbit’s perihelion according to GTR or YA (yet, for small α , and nearly circular orbits) will 

be advanced by 
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Thus, YA produces exactly the same result as predicted by GTR for a nearly circular 

orbit.  

            Let us go further ahead by considering an elliptical orbit. The approximationg [cf. the 

side by side division of eqs. (50) and (51b)]  

α31r

rN




1
 ,        (56) 

holds satisfactorily even in this case, and we can still use it in the LHS of eq. (54a). One can 

thus rewrite eq. (55), but this time as an integration over the Newtonian elliptical orbit: 

  dtαω)dtω(ω NNPrecession 3    .      (57) 

The angular momentum Nω  is, by definition,  

dt

d
ω N

N


    ,          (58) 

where N  is the polar angle centered at the focus of the ellipse hosting the Sun. 

The quantity α  was defined in eq. (4), and the polar coordinate r is given by 

                                                 
g   Concerning a Newtonian elliptical orbit of semi-major axis aN  at a distance rN from the Sun, where the planet 

has the measured velocity v, one can write  
2
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      For the present case involving an open elliptical orbit of semi-major axis a at the corresponding distance r 
from the Sun, yet where the planet still has the measured velocity v, the above relationship turns into    
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     We would now like to evaluate rN/r which, for chiefly small eccentricities, can be written as aN/a at the 
perihelion. Therefore,  
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      To arrive at the above equalization, we made use of a well-known property, which is that, if a ratio (third one 
from the left) is equal to another one (fifth one from the left), then we can define a new ratio (at the very right 
hand side) consisting of a numerator made up of the difference of their numerators and a denominator made 
up of the difference of their denominators, the result being equal to the original ratio. Finally, via dividing the 
second orbital equation at the top with the first one at the top, we attain precisely the ratio rN/r:  
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cos1 ε

p
r


   ,         (59)  

where ε  is the eccentricity of the elliptical orbit, and p is given by 

a

b
p

2

 ,         (60) 

with a and b being the semi-major and semi-minor axes, respectively, of the ellipse.   

Under these circumstances, eq. (57) becomes 
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This readily leads to 

22Precession cb

aG
π6

M0  ,        (62) 

which is exactly what GTR predicts for higher orbit eccentricities. 

Interestingly enough, if we had used v2/ c2 instead of α  in a rigorous derivation, the 

result would still be the same [25]. Recall that α  is of the order of 10-8 for Mercury. 

Therefore, the approximation of α2e  by α21  is very well justified. A visible difference 

may come into play near very compact bodies for which α  becomes much larger, and for 

which one may need to use one more term in the Taylor expansion of α2e . The resulting 

difference can be calculated without difficulty, but this will not be considered in this paper. 

 
VII. CONCLUSION 

Under the framework of Yarman’s Approach (abbreviated as YA), we presented a concise 

derivation of the precession of the perihelion of a Mercurial planet, and compared it to what 

is, in contrast, yielded by a setup based on GTR. 

Both approaches herein were founded on the conservation of energy in a closed 

system. Conceptual structure due to GTR was wholly preserved in our formulations. We 

discovered that, the same precession outcome is obtained in both GTR or YA for Mercurial or 
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even higher orbit eccentricities, even though the two theories are built on fundamentally 

different assumptions embodying conflicting properties. This, we find amazing. Future 

measurements of higher orbit eccentricities may offer a way of ascertaining the validity of 

which approach under consideration comes closer to reality.  

Table 3 summarizes the conceptual differences between GTR and YA. 

In GTR, the precession of the perihelion of a planet is due to i) the motion of the 

planet, ii) the contraction of lengths, and iii) the stretching of the units of the period of time. 

The last two items are conjointly responsible for the decrease of the local velocity when 

assessed by the distant observer. 

In YA, the precession phenomenon is due to i) the motion of the planet just like it is 

the case with GTR, ii) the quantum mechanical stretching of the lengths commensurate with a 

decrease due to the binding of the object’s rest mass to the host mass, and iii) the resultant 

quantum mechanical stretching of the periods of time, causing the so-called “gravitational 

constant” to vary depending on the strength of gravity. Furthermore, the last two items 

together secure the constancy of the velocity of light (or any other speed) under gravitation in 

empty space. 

While it is evident today that there are insurmountable difficulties for unifying GTR 

with quantum mechanics, these difficulties vanish when applying the YA framework as 

shown here. YA is fundamentally erected on just the law of energy conservation. This 

consequently yields the weak equivalence principle. Our approach thus leads to a unified 

description of the micro and macro world physics. It can furthermore be generalized to 

elegantly address many-body scenarios, which even today remain a daunting task to set up in 

GTR. 
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